Мышечная ткань составляет основную массу сердца

Мышечная ткань составляет основную массу сердца thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 декабря 2017;
проверки требуют 8 правок.

повреждение мышечной ткани миокарда

Миока́рд (лат. myocardium от др.-греч. μῦς «мышца» + καρδία «сердце») — мышечная ткань сердечного типа, основным гистологическим элементом которой является кардиомиоцит; соответствует среднему слою сердца и формирует толщу стенок желудочков и предсердий.[B: 1][B: 2]

Мышечная ткань сердца состоит из отдельных клеток — миоцитов. Различают три вида сердечных миоцитов:[1][B: 3][B: 4]

  1. проводящие, или атипичные (устар.), кардиомиоциты;
  2. сократительные, или типичные, кардиомиоциты, которые также называют клетками рабочего миокарда;
  3. секреторный кардиомиоциты.

Иные исследователи[2] выделяют пять видов кардиомиоцитов, дополнительно разделяя группу проводящих кардиомиоцитов на синусовые (пейсмекерные), переходные и проводящие.

Волокна рабочего миокарда предсердий и желудочков составляют основную массу сердца —
99%, обеспечивают его нагнетательную функцию.[B: 5] В состав миокарда также входят поддерживающая рыхлая волокнистая соединительная ткань и коронарные сосуды.[3]

Эмбриология[править | править код]

Миокард, также как и эпикард, формируется из миоэпикардальной пластинки (висцерального листка сплахнотома шеи зародыша), в то время как эндокард — из мезенхимы.[1]
Источники развития сердечной поперечно-полосатой мышечной ткани — симметричные участки висцерального листа сплахнотома в шейной части зародыша — миоэпикардиальные пластинки; из них также дифференцируются клетки мезотелия эпикарда.[2] После ряда митотических делений G1-миобласты начинают синтез сократительных и вспомогательных белков и через стадию G0-миобластов дифференцируются в кардиомиоциты, приобретая вытянутую форму.[1]

В отличие от поперечно-полосатой ткани скелетного типа в кардиогенезе не происходит обособления камбиального резерва, а все кардиофиоциты необратимо находятся в фазе G0клеточного цикла.[1] Стволовых клеток или клеток-предшественников в сердечной мышечной ткани нет, поэтому погибающие кардиомиоциты не восстанавливаются.[2]

Гистология[править | править код]

Миокард представляет собой плотное соединение мышечных клеток — кардиомиоцитов, составляющих основную часть миокарда. Отличается от других типов мышечной ткани (скелетная мускулатура, гладкая мускулатура) особым гистологическим строением, облегчающим распространение потенциала действия между кардиомиоцитами.
Характерной структурной особенностью ткани сердечной мышцы является наличие в области вставочных дисков зон плотного прилегания мембран кардиомиоцитов — нексусов. За счёт этого в области нексусов создаётся низкое электрическое сопротивление по сравнению с другими областями мембраны, что обеспечивает быстрый переход возбуждения с одного волокна на другое. Такое псевдосинцитиальное строение сердечной мышцы определяет ряд её особенностей.[4]
Кроме того, поперечные участки выступов соседних клеток соединены друг с другом посредством интердигитаций и десмосом; к каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся в десмоплакиновом комплексе, — и таким образом при сокращении тяга одного кардиомиоцита передаётся другому.[2]
Эту структурную особенность миокарда, способствующую более быстрому распространению потенциала действия в миокарда, обозначают как функциональный синцитий, чтобы показать, что сердце является единым в функциональном отношении органом.[5]

Предсердные и желудочковые кардиомиоциты относятся к разным популяциям рабочих кардиомиоцитов. Предсердные кардиомиоциты относительно мелкие, 10 мкм в диаметре и длиной 20 мкм; в них слабее развита система Т-трубочек, но в зоне вставочных дисков значительно больше щелевых контактов. Желудочковые кардиомиоциты крупнее, 25 мкм в диаметре и до 140 мкм в длину; они имеют хорошо развитую систему Т-трубочек. Сократительный аппарат миоцитов предсердий и желудочков различается также и составом изоформ миозина, актина и других сократительных белков.[1] В отличие от желудочковых кардиомиоцитов, форма которых близка к цилиндрической, предсердные кардиомиоциты чаще имеют отростчатую форму и меньшие размеры.[6]

Элементарной сократительной единицей кардиомиоцита является саркомер — участок миофибриллы между двумя так называемыми линиями Z. Длина саркомера равна 1,6—2,2 мкм в зависимости от степени сокращения. В саркомере чередуются светлые и тёмные полосы, отчего миофибрилла при световой микроскопии выглядит поперечно исчерченной. В центре находится тёмная полоса постоянной длины (1,5 мкм) — диск A, его ограничивают два более светлых диска I переменной длины. Саркомер миокарда, как и скелетной мышцы, состоит из переплетённых нитей (миофиламентов) двух типов. Толстые нити есть только в диске A. Они состоят из белка миозина, имеют сигарообразную форму, диаметр 10 нм и длину 1,5—1,6 мкм. Тонкие нити включают прежде всего актин и идут от линии Z через диск I в диск A. Их диаметр составляет 5 нм, длина — 1 мкм. Толстые и тонкие нити накладываются друг на друга только в диске A; диск I содержит лишь тонкие нити. При электронной микроскопии между толстыми и тонкими нитями видны поперечные мостики.

Рабочие кардиомиоциты покрыты сакролеммой,состоящей из плазмолемы и базальной мембраны, в которую вплетаются тонкие коллагеновые и эластические волокна, образующие надёжный внешний скелет этих клеток. Базальная мембрана кардиомиоцитов, содержащая большое количество гликопротеинов, способных связывать Ca2+, может принимать участие наряду с саркотубулярной сетью и митохондриями в перераспределении Ca2+ в цикле сокращение — расслабление. Базальная мембрана латеральных сторон кардиомиоцитов инвагинирует в канальцы Т-системы (в отличие от скелетных мышц).[6]

Читайте также:  Атлант для набора мышечной массы

Часть кардиомиоцитов предсердий (особенно правого) обладают выраженной секреторной функцией (секреторные кардиомиоциты): они содержат у полюсов ядер хорошо выраженный комплекс Гольджи и секреторные гранулы, содержавшие гормон атриопептин.[1]

Биохимия[править | править код]

Главным источником энергии для миокарда является процесс аэробного окисления неуглеводных
субстратов. Это свободные жирные кислоты и молочная кислота (около 60 %), пировиноградная кислота, кетоновые тела и аминокислоты (менее 10 %). При интенсивной мышечной работе в крови накапливается молочная кислота в результате анаэробного гликолиза в мышцах. Лактат является дополнительным источником энергии для миокарда, причем, расщепляя молочную кислоту,
сердце способствует поддержанию постоянства pH.
Около 30% расходуемой сердцем энергии покрывается за счет глюкозы; при физической нагрузке увеличивается энергетическая доля жирных и молочной кислот при одновременном снижении энергетической доли глюкозы. Однако большая зависимость деятельности сердечной мышцы
от аэробного окисления делает сердце весьма зависимым от поступления кислорода к кардиомиоцитам. Поэтому при ухудшении коронарного кровотока и недостаточном поступлении кислорода к сердечной мышце в ней могут развиваться патологические процессы, вплоть до инфаркта.
Защитную роль для сердца выполняет его миоглобин, которого в сердечной мышце содержится около 4 мг/г ткани. Он обладает большим сродством к O2, запасает его во время диастолы сердца и отдает во время систолы, когда кровоток в коронарных артериях левого желудочка почти прекращается (сохраняется 15%); в правом желудочке и предсердиях кровоток постоянный.[7]

Физиология[править | править код]

Последовательное сокращение и расслабление различных отделов сердца связано с его строением и наличием проводящей системы сердца, по которой распространяется импульс. Миокард предсердий и желудочков разобщён фиброзной перегородкой, что позволяет им сокращаться независимо друг от друга, так как возбуждение не может распространяться по фиброзной ткани. Возбуждение от предсердий к желудочкам проводится только через атриовентрикулярный пучок, отходящий от атриовентрикулярного узла[B: 6].

Секреторные кардиомиоциты предсердий при их сильном растяжении по причине повышенного артериального давления (АД) синтезируют и секретируют атриопептин, вызывающий снижение АД.
[1]

См. также[править | править код]

  • Проводящая система сердца
  • Закон Франка — Старлинга

Примечания[править | править код]

  1. 1 2 3 4 5 6 7 Гистология, 2002, Сердечная мышечная ткань, с. 180-184.
  2. 1 2 3 4 Гистология, 1998, Сердечная мышечная ткань, с. 263—264.
  3. ↑ Гистология, 2002, Глава 10. Сердечно-сосудистая система, с. 288—310.
  4. ↑ Судаков, 2000, Физиология сердца, с. 319-337.
  5. ↑ Ткаченко, 2005, § 2.8. Функции мышечных клеток сердца, с. 113-122.
  6. 1 2 Гистология, 1998, Миокард, с. 416—418.
  7. ↑ Агаджанян, 2009, Глава 11 Сердечно-сосудистая система, с. 260-310.

Литература[править | править код]

  1. ↑ Гистология / под ред. Э. Г. Улумбекова, Ю. А. Чалышева. — 2-е изд., перераб. и доп.. — М.: ГЕОТАР-МЕД, 2002. — 672 с. — 3000 экз. — ISBN 5-9231-0228-5.
  2. ↑ Гистология / под ред. Ю. И. Афанасьева, Н. А. Юриной. — М.: Медицина, 1998. — 15 000 экз.
  3. ↑ Физиология. Основы и функциональные системы / под ред. К. В. Судакова. — М.: Медицина, 2000. — 784 с. — ISBN 5-225-04548-0.
  4. Ткаченко Б.И. Нормальная физиология человека. — М.: Медицина, 2005. — 928 с.
  5. Агаджанян H. A., Смирнов В. М. Нормальная физиология. — М.: ООО «Издательство «Медицинское информационное агентство»», 2009. — 520 с. — 5000 экз. — ISBN ISBN 978-5-9986-0001-2.
  6. Гайтон А. К., Холл Д. Э. Медицинская физиология = Textbook of Medical Physiology / под ред. В.И. Кобрина. — М.: Логосфера, 2008. — С. 112. — 1296 с. — ISBN 978-5-98657-013-6.

Ссылки[править | править код]

  • Морфологические и физиологические особенности миокарда
  • Миокард

Органы и ткани, образующиеся из зародышевых листков

Эктодерма
  • Эпидермис кожи
  • Ногти
  • Волосы
  • Потовые железы
  • Вся нервная система: головной мозг, спинной мозг, нервное окончание, нервы
  • Рецепторные клетки органов чувств
  • Хрусталик глаза
  • Зубная эмаль
Энтодерма
  • Эпителий желудка, пищевода, кишечника, трахеи, бронхов, лёгких, желчного пузыря, мочевого пузыря, мочеиспускательного канала
  • Печень
  • Поджелудочная железа
  • Щитовидная и паращитовидная железы
  • Хорда
Мезодерма
  • Гладкая мускулатура всех органов
  • Скелетная мускулатура
  • Сердечная мышца
  • Соединительная ткань
  • Кости
  • Хрящи
  • Дентин зубов
  • Кровь
  • Кровеносные сосуды
  • Брыжейка
  • Почки
  • Семенники и яичники

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 января 2018;
проверки требует 31 правка.

Мы́шечные тка́ни (лат. Textus muscularis «ткань мышечная») — ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность является главной функцией.

Читайте также:  Питание при наборе мышечной массы в бодибилдинге

Основные морфологические признаки элементов мышечной ткани: удлинённая форма, наличие продольно расположенных миофибрилл и миофиламентов — специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Слева: мышцы левой ноги (вид спереди); справа: мышцы и кости правой ноги (вид в профиль справа); посередине: надколенник. Микеланджело, ок. 1515—1520 г.

Специальные сократительные органеллы — миофиламенты, или миофибриллы — обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков — актина и миозина, при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин — белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Свойства мышечной ткани[править | править код]

  • Возбудимость
  • Проводимость
  • Лабильность
  • Сокращение.

Виды мышечной ткани[править | править код]

Гладкая мышечная ткань[править | править код]

Состоит из одноядерных клеток — миоцитов веретеновидной формы длиной 15—500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть её деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).
С помощью гладких мышц изменяются размеры зрачка, кривизна хрусталика глаза.

Поперечнополосатая скелетная мышечная ткань[править | править код]

Состоит из миоцитов, имеющих большую длину (до нескольких см) и диаметр 50—100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Поперечнополосатая сердечная мышечная ткань[править | править код]

Состоит из одно- или двухъядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы (по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения — вставочные диски, в которых объединяется их цитоплазма. Существует также другой межклеточный контакт — анастомозы (впячивание цитолеммы одной клетки в цитолемму другой). Этот вид мышечной ткани является основным гистологическим элементом миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша). Особым свойством этой ткани является автоматизм — способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках (типичные кардиомиоциты). Эта ткань является непроизвольной (атипичные кардиомиоциты). Существует третий вид кардиомиоцитов — секреторные кардиомиоциты (в них нет фибрилл). Они синтезируют предсердный натрийуретический пептид (атриопептин) — гормон, вызывающий снижение объёма циркулирующей крови и системного артериального давления.

Функции мышечной ткани[править | править код]

Двигательная. Защитная. Теплообменная. Сокращение и реакция на раздражение. Также можно выделить ещё одну функцию — мимическую (социальную). Мышцы лица, управляя мимикой, передают информацию окружающим.

Мышечная ткань как пищевой продукт[править | править код]

Мясо (пищевой продукт) представляет собой мышечную ткань убитого животного (например, крупного рогатого скота). Мясо — ценный продукт для человека и других плотоядных животных

Примечания[править | править код]

Ссылки[править | править код]

  • Мышечная ткань // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.

Источник

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости.) Важнейшие
функции мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечно-полосатая (скелетная) и сердечная
мышечные ткани.

Мышцы человека

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках
желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов — коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все
остальные клетки.

Гладкие миоциты, гладкая мышечная ткань

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы
внутренних органов (к примеру, мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов — миофиламентов, которые расположены в клетке хаотично и не имеют
такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно.
К примеру, невозможно по желанию сузить или расширить зрачок.

Читайте также:  Нарастить мышечную массу при диабете

Гладкая мускулатура

Скелетная поперечно-полосатая мускулатура

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными
волокнами, имеющими до 100 и более ядер — миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину
от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Скелетная мышечная ткань, миосимпласт

Характерная черта данной ткани — поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос
на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего
все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы — саркомер.

Саркомер

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер — элементарная сократительная единица
мышцы. Состоит из тонкого белка — актина, и толстого — миозина. Сокращение осуществляется благодаря трению нитей актина о
нити миозина, в результате чего саркомер укорачивается.

Строение саркомера

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они
связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение — посмертное затвердевание мышц — связано именно с ионами кальция, которые устремляются в область
низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах,
в связи с чем наблюдается стойкая мышечная контрактура: конечности очень сложно разогнуть или согнуть.

Сокращение мышц

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие
от гладких миоцитов. Скелетные мышцы быстро утомляются и сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления
растянуты во времени.)

Скелетные мышцы поддаются нашему осознанному контролю, их скоращение регулируется произвольно. К примеру, по желанию мы можем изменить
скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение
суставы.

Строение мышцы

Сердечная мышечная ткань

Мышечная ткань сердца — миокард (от др.-греч. μῦς «мышца» + καρδία — «сердце») — средний слой сердца, составляющий основную
часть его массы.

Миокард

Этот тип мышечной ткани удивительным образом сочетает характеристики двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое
уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно
передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством — автоматизмом — способностью возбуждаться и сокращаться без влияний извне,
самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения
сердца в нем будут продолжаться еще несколько часов.

Автоматизм сердца, изолированное сердце лягушки сокращается

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных клеток, которые также называют водителями ритма. Они
спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям
ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- «чрез, слишком» + τροφή — «еда, пища») — в них увеличивается количество мышечных волокон, объем мышечной
массы нарастает.

Гипертрофия мышц

В условиях гиподинамии (от греч. ὑπό — «под» и δύνᾰμις — «сила»), то есть пониженной активности, мышцы уменьшаются вплоть до полной
атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Атрофия мышц

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в
размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление.
Гипертрофия сердца — состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае
гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Гипертрофия сердца

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка — мезодермы.

Зародыш человека

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник