Утомление и отдых мышц значение физической тренировки мышц

Утомление и отдых мышц значение физической тренировки мышц thumbnail

Мышечная работа, значение тренировки мышц

Основной функцией мышечной системы человека является двигательная деятельность. Мышцы обеспечивают перемещение тела в пространстве или отдельных его частей относительно друг друга, т.е. производят работу. Этот вид мышечной работы называют динамическим, или фазным. Мышцы, осуществляющие поддержание определенного положения тела в пространстве, производят работу, которая получила название статической мышечной работы. Обычно динамическая и статическая мышечные работы дополняют друг друга.

При мышечной работе возрастает потребность в кислороде, что вызывает необходимость увеличения кровоснабжения скелетных мышц и миокарда. Мышечная работа, особенно динамическая, увеличивает возврат венозной крови к сердцу, усиливает и учащает его сокращения. При напряженной мышечной работе усиливается газообмен, повышается интенсивность дыхания, наблюдается изменение легочной вентиляции, диффузионной способности альвеол и т.д. Мышечная работа значительно увеличивает энерготраты организма: суточный расход энергии может достигать 4500—5000 ккал (21 000?103 Дж).

Между величиной нагрузки и производимой мышечной работой существует определенная зависимость: по мере увеличения нагрузки мышечная работа возрастает до какого-то определенного уровня, а затем уменьшается. Максимальная мышечная работа производится при средних нагрузках (так называемое правило средних нагрузок), что связано с особенностями динамики мышечного сокращения. Общие затраты энергии (Е) представляют собой сумму энергий, затраченной на собственно механическую работу (W), и энергии, переходящей в тепло (Н):

   R = W + H

Производительность мышечной работы зависит от мощности выполняемой работы: при постоянной мощности динамической мышечной работы ее максимальная эффективность отмечается при средних значениях нагрузки, при повышении мощности производительность мышечной работы падает.

Важным показателем мышечной работы служит мышечная выносливость. В условиях статической мышечной работы мышечная выносливость определяется временем, в течение которого поддерживается статическое напряжение или удерживается некоторый груз. Предельное время статической работы (статическая выносливость) обратно пропорционально нагрузке. Выносливость в процессе выполнения динамической мышечной работы измеряется отношением величины работы ко времени ее выполнения. При этом выделяют пиковую и критическую мощность динамической мышечной работы: пиковой является максимальная мощность, достигаемая в какой-то момент динамической работы; критической называют мощность, поддерживаемую на одинаковом уровне достаточно длительное время. Выделяют также динамическую выносливость, которая определяется временем осуществления работы с заданной мощностью.

Производительность мышечной работы в значительной мере зависит от тренировки, уменьшающей энергозатраты организма за счет снижения потребления кислорода при выполнении одной и той же работы. Одновременно тренировка повышает эффективность деятельности сердечно-сосудистой и дыхательной систем: у тренированных людей в состоянии мышечного покоя уменьшаются систолический и минутный объем сердца, кислородный запрос (т. е. потребность в кислороде) и кислородный долг (т.е. то количество кислорода, которое потребляется по окончании мышечной работы без учета его потребления в покое). Кислородный долг отражает процессы расщепления высокоэнергетических веществ, не восстанавливающихся в ходе работы, а также траты кислородного резерва организма во время мышечной работы.

Тренировка повышает также мышечную силу. В процессе тренировки происходит рабочая мышечная гипертрофия, заключающаяся в утолщении мышечных волокон за счет увеличения массы саркоплазмы и объема сократительного аппарата мышечных волокон. Тренировка способствует улучшению координации и автоматизации мышечных движений, вследствие чего исчезает активность «лишних» мышц, что способствует повышению работоспособности и быстрому восстановлению после утомления. Недостаток мышечной активности в течение длительного периода приводит к появлению целого комплекса неприятных для организма последствий (гиподинамия).

Мышечная работа сопровождается изменениями в деятельности многих систем органов: сердечно-сосудистой, системы органов дыхания. Ткани получают больше кислорода, биохимические реакции в клетках ускоряются, активнее протекает обмен веществ в тканях.

Источник

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила — мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом — максимальным напряжением, которое она может развить (статическая сила).

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

Физиологический поперечник мышцы — длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой (рис. 83 ).

А Б В Г

Рис. 83. Анатомический (а-а) и физиологический (б-б) поперечники мышц с разным расположением волокон:

А — параллельноволокнистый тип; Б — одноперистый; В — двуперистый; Г — многоперистый.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

Сравнительным показателем силы разных мышц является абсолютная мышечная сила — отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

Работа мышц. При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

W= P·h Дж (кг/м, г/см)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Мощность мышцы определяется как величина работы в единицу времени. Она достигает максимума у всех типов мышц так же при средних нагрузках и при среднем ритме сокращения. Наибольшая мощность у быстрых мышц.

Утомление мышц. Утомление — временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя о истощении (частичном) энергетических ресурсов.

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость. Высота сокращения мышцы при развитии утомления постепенно снижается. Это снижение может дойти до полного исчезновения сокращений. Понижаясь, сокращения делаются все более растянутыми, особенно за счет удлинения периода расслабления: по окончании сокращения мышца долго не возвращается к первоначальной длине, находясь в состоянии контрактуры (крайне замедленное расслабление мышцы). Скелетные мышцы утомляются раньше гладких. В скелетных мышцах сначала утомляются белые волокна, а потом красные.

Из различных представлений о механизме утомления одной из наиболее ранних теорий, объясняющих утомление, была теория истощения, предложенная К. Шиффом. Согласно этой теории причиной утомления служит исчезновение в мышце энергетических веществ, в частности гликогена. Однако, детальное изучение показало, что в утомленных до предела мышцах содержание гликогена еще значительно. В дальнейшем Е. Пфлюгером была выдвинута теория засорения органа продуктами рабочего распада (теория отравления). Согласно этой теории, утомление объясняется накоплением большого количества молочной, фосфорной кислот и недостатком кислорода, а так же других продуктов обмена, которые нарушают обмен веществ в работающем органе и его деятельность прекращается.

Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Дальнейшим изучением утомления в условиях целого организма установлено, что в утомленной мышце появляются продукты обмена веществ, уменьшается содержание гликогена, АТФ, креатинофосфата. Изменения наступают в сократительных белках мышцы. Происходит связывание или уменьшение сульфгидрильных групп актомиозина, в результате чего нарушается процесс синтеза и распада АТФ. Нарушения в химическом составе мышцы, находящейся в целостном организме, выражены в меньшей степени, чем в изолированной благодаря транспортной функции крови.

Исследованиями Н.Е. Введенского установлено, что утомление прежде всего развивается в нервно-мышечном синапсе в связи с низкой его лабильностью.

Быстрая утомляемость синапсов обусловлена несколькими факторами.

Во-первых, при длительном раздражении в нервных окончаниях уменьшается запас медиатора, а его синтез не поспевает за расходованием.

Во-вторых, накапливающиеся продукты обмена в мышце понижают чувствительность постсинаптической мембраны к ацетилхолину, в результате чего уменьшается величина постсинаптического потенциала. Когда он понижается до критического уровня, в мышечном волокне не возникает возбуждения.

И.М.Сеченов (1903)­, исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха, т.е. отдыха сопровождаемого работой левой руки. Подобного же рода влияние на работоспособность утомленной руки оказывает сочетающееся с отдыхом раздражение индукционным током чувствительных (афферентных) нервных волокон кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.

Таким образом, активный отдых, сопровождающийся умеренной работой других мышечных групп, оказывается более эффективным средством борьбы с утомлением двигательного аппарата, чем простой покой.

Причину наиболее эффективного восстановления работоспособности двигательного аппарата в условиях активного отдыха Сеченов с полным основанием связывал с действием на центральную нервную систему афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.

В организме в различных звеньях рефлекторной дуги утомление в первую очередь наступает в нервных центрах, особенно в клетках коры больших полушарий.

В настоящее время установлено, что функциональное состояние мышц находится под влиянием центральной нервной системы и прежде всего коры больших полушарий. Это влияние осуществляется через соматические нервы, вегетативную нервную систему и железы внутренней секреции.

По двигательным нервам к мышце поступают импульсы из спинного и головного мозга, вызывая ее возбуждение и сокращение, сопровождающиеся изменением физико-химических свойств и функционального состояния мышцы.

Импульсы, поступающие по симпатическим волокнам в мышцу, усиливают процессы обмена веществ, кровоснабжения и работоспособность мышцы. Такое же действие оказывают и медиаторы симпатической системы — адреналин и норадреналин.

Однако единой теории, объясняющей причины утомления, сущность утомления до настоящего времени нет, т.к. в естественных условиях утомление двигательного аппарата организма является многофакторным процессом.

Наступление утомления мышц можно задержать с помощью тренировки. Она развивает и совершенствует функциональные возможности всех систем организма: нервной, дыхательной, кровообращения, выделения и т.д.

При тренировке увеличивается объем мышц в результате роста и утолщения мышечных волокон возрастает мышечная выносливость. В мышце повышается содержание гликогена, АТФ и креатинфосфата, ускоряется течение процессов распада и восстановления веществ, участвующих в обмене. В результате тренировки коэффициент использования кислорода при работе мышц повышается, усиливаются восстановительные процессы вследствие активизации всех ферментативных систем, уменьшается расход энергии. При тренировке совершенствуется регуляторная функция центральной нервной системы, и в первую очередь, коры больших полушарий.

Источник

Во время занятий спортом, ваше тело испытывает большие физические нагрузки – все это изменяет состояние ваших мышц. После интенсивной работы они утомляются и изменяются. В этой статье я расскажу вам, как нагрузка влияет на развитие утомления мышц, какие процессы происходят в мышечной ткани и как это влияет на тренировки. Эти знания должны быть в копилке каждого, кто занимается бодибилдингом, будь то любитель или профессионал, девушка или мужчина.

Что такое мышечное утомление

Это физиологический процесс, вызывающий снижение работоспособности мышечных волокон, из-за выполнения интенсивной или продолжительной работы, при этом уменьшается их длина, сила и скорость сокращения.

Утомленные мышечные волокна после снятия нагрузки остаются частично сокращёнными и могут восстанавливать свою работоспособность после отдыха.

Механизм утомления мышц

Для получения энергии в мышцах происходит расщепление молекулы аденозинтрифосфата (АТФ) до аденозинфосфата (АДФ). В результате этой реакции выделяется энергия, которая используется для сокращения. Мышечная ткань постоянно воспроизводит молекулы АТФ, что позволяет ей работать без остановки.

Утомление и отдых мышц значение физической тренировки мышц

Если кислород поставляется к мышцам своевременно, то они синтезируют АТФ из глюкозы, выделяя в процессе реакции углекислый газ и воду. Если кислорода недостаточно – реакция протекает не полностью. В результате синтеза образуется побочный продукт – молочная кислота (лактат), которая накапливается и вызывает быстрое нарастание усталости.

С чем связано утомление мышц

Ученые выявили несколько причин, вызывающих мышечную усталость:

  1. Истощение энергетических ресурсов – запасов углеводов, которые содержатся в мышцах в виде гликогена.
  2. Накопление продуктов обмена веществ в тканях.
  3. Нарушение передачи нервных импульсов в центральной нервной системе и снижение нервно-мышечной связи.

Какая нагрузка влияет на развитие мышечного утомления

Чем интенсивнее работает мышца, тем быстрее она утомляется.

Интенсивность может быть двух типов:

  • Высокая скорость движений (например, в спринтерском беге).
  • Большое усилие, необходимое чтобы поднять вес (в тяжёлой атлетике или пауэрлифтинге).

Напротив легкая, не интенсивная нагрузка может поддерживаться организмом в течение многих часов. Примером такой работы является ходьба. В этом случае энергия к мышцам поставляется аэробной системой через окисление жиров кислородом.

Виды утомления мышц

  • Энергетическое утомление.

В нашем организме есть несколько механизмов синтеза энергии:

  • Фосфатный механизм синтеза АТФ использует имеющиеся запасы фосфатов в мышцах. Он быстро заново синтезирует АТФ из АДФ, используя высокоэнергетическое вещество креатинфосфат (КрФ). Но запасов КрФ хватает всего на 8-10 секунд работы с максимальной интенсивностью.
  • После истощения креатинфосфата для синтеза фосфатов мышцы начинают сжигать углеводы. Глюкоза откладывается в мышечной ткани и печени в виде гликогена. У людей разной тренированности количество гликогена различается, но в среднем его хватает на 60-90 минут интенсивных занятий. Энергия из углеводов может синтезироваться как с участием кислорода – аэробно, так и без него – анаэробно.

Утомление и отдых мышц значение физической тренировки мышц

После истощения углеводных запасов спортсмен переходит на энергообеспечение только за счёт расщепления жиров, при этом он теряет способность выполнять упражнения с высокой интенсивностью. В этот момент происходит снижение скорости и силы мышц.

  • Жиры могут расщепляться только в присутствии кислорода. Когда мышечные волокна питаются только за счёт жиров, они уже не могут выполнять движения максимальной мощности. Зато длительную лёгкую работу они могут делать ещё очень долго, потому что запасы жира в организме практически неисчерпаемы.

Энергетическая усталость возникает после 60-90 минут высокоинтенсивной тренировки, она связана с исчерпанием запаса гликогена, появляется слабость в ногах и руках, в таких условиях очень сложно продолжать занятия. При наступлении энергетической усталости можно быстро восстановить работоспособность мышечной системы – достаточно насытить организм быстрыми углеводами (сахар или глюкоза).

  • Утомление из-за накопления продуктов обмена веществ.

Если при небольших физических нагрузках, например при ходьбе, питание мышц может осуществляться полностью за счёт сжигания жира. То при увеличении интенсивности движений в энергообмен включается механизм расщепления углеводов.

С дальнейшим ростом интенсивности скорость окисления углеводов увеличивается, но из-за нехватки кислорода расщепление части глюкозы проходит анаэробно. При этом образуется молочная кислота (лактат), которая накапливается в мышечной ткани. Такие процессы часто происходят, когда спортсмен, в забеге на длинную дистанцию, резко увеличивает темп на финишной прямой.

Утомление и отдых мышц значение физической тренировки мышц

Накопление лактата быстро приводит к усталости. Возникают болезненные ощущения. Из-за высокой концентрации молочной кислоты повреждаются стенки клеток, а их содержимое попадает в кровь. Высокое содержание лактата в мышечной ткани нарушает координационные способности, приводит к микротравмам и уменьшает скорость обмена веществ.

  • Нервно-импульсное утомление.

Этот вид мышечной усталости заключается в изменении процесса передачи импульса в нервно-мышечном соединении. Это связано с невозможностью долго поддерживать высокую производительность нервной клетки, она снижается под воздействием нагрузки. Если уровень интенсивности долго сохраняется на высоком уровне, нервная клетка блокируется и перестаёт передавать нервные импульсы мышце.

Симптомы мышечного утомления

С увеличением усталости снижается высота и скорость сокращения мышц. Спортсмен начинает медленнее выполнять взрывную работу. Снижается скорость бега, высота прыжков, уменьшается частота и амплитуда движения. Наблюдается снижение координации, нарушается техника выполнения упражнения.

Это связано с тем, что волокна белых мышц, которые используют энергию углеводов, перестали получать питание или закислились из-за накопления молочной кислоты.

Возможные последствия и осложнения

Высокая концентрация лактата вызывает мышечную боль, возникают микроразрывы волокон, что может стать причиной травмы. Высокое содержание молочной кислоты снижает восстановление креатинофосфата и уменьшает скорость расщепления жиров.

Мышцам необходимо давать достаточно времени для восстановления после тренировки, в противном случае может возникнуть перетренированность.

Утомление и отдых мышц значение физической тренировки мышц

Признаки перетренированности:

  • Длительное восстановление пульса до нормальных значений после нагрузки и учащённое сердцебиение в состоянии покоя.
  • Быстрое наступление усталости, снижение спортивных показателей.
  • Отсутствие аппетита.
  • Боли в мышцах, связках и суставах.
  • Повышенная нервозность и чувство тревоги.
  • Бессонница.
  • Повышенная потливость.

Как следствие снижается интерес к занятиям, повышается риск травм, снижается иммунитет. Для восстановления организма требуется резко снизить интенсивность тренировок в течение 1-2 недель.

Как устранить мышечную усталость

Чтобы полностью восстановить тонус мышцы после интенсивной тренировки организму требуется от 24 до 96 часов отдыха.

Чтобы вывести 95% молочной кислоты из мышцы организму может потребоваться более 1 часа 20 минут пассивного отдыха. Чтобы ускорить этот процесс нужно выполнять лёгкую работу. Например, непрерывный бег трусцой позволит в два раза быстрее избавиться от лактата, чем при пассивном отдыхе.

После тренировки необходимо сделать растяжку, это позволит вернуть исходную длину мышечного волокна и расслабить его.

Утомление и отдых мышц значение физической тренировки мышц

Если вы обнаружили у себя признаки перетренированности, вам следует предпринять следующие действия:

  • Исключить умственное напряжение.
  • Заняться приятными делами, развлечься, прогуляться на свежем воздухе.
  • Принять ванну, сходить в баню, сделать массаж.
  • Сократить интенсивность тренировок не менее чем на 50% в течение следующей недели.

Нельзя продолжать занятия с той же интенсивностью что и раньше. Не рекомендуется пассивный отдых, в этом случае для восстановления потребуется вдвое больше времени.

Спортивное питание и продукты для снятия усталости

  1. Аминокислоты быстро восстанавливают разрушенные во время тренировок мышцы, эти соединения участвуют во всех физиологических процессах. Приём аминокислот ускорит восстановление, увеличит выработку нужных гормонов и улучшит общее состояние организма.
  2. Креатин – вещество, которое непосредственно участвует в энергетическом обмене АТФ и АДФ. Креатин нейтрализует кислоты, вызывающие усталость, в том числе молочную. Согласно научным исследованиям и отзывам это вещество повышает выработку тестостерона.
  3. Для быстрого восстановления спортсменам нужно употреблять в пищу достаточное количество продуктов насыщенных витаминами и минералами, в том числе: сырые овощи, фрукты и зелень.
  4. Рыбий жир содержит полиненасыщенные жирные кислоты омега-3, которые участвуют в деятельности всех систем организма, начиная от головного мозга и вплоть до восстановления суставов.

Влияние усталости на иммунную систему

Физические нагрузки, инфекции и иммунитет тесно связаны между собой. Умеренные аэробные тренировки стимулируют иммунную систему, а продолжительные изнурительные занятия спортом напротив подавляют её. Физические перегрузки могут приводить к повреждению тканей и создавать очаги воспаления.

При превышении интенсивности тренировок 70% от максимальных возможностей, их положительное влияние на иммунитет сходит на нет.

Заключение

Мышечное утомление это естественный процесс, который защищает мышцы и нервную систему от разрушения. Мы испытываем усталость из-за истощения питательных веществ, накопления молочной кислоты и уменьшения нервно-мышечных связей. Очень важно во время занятий бодибилдингом прислушиваться к своим мышцам не перетренировываться, соблюдать режим сна и питания. Только в этом случае можно получить максимальные результаты от тренировки.

Если вас заинтересовала эта статья, делитесь ей в социальных сетях. Подписывайтесь на мою группу Вконтакте и Facebook, там вы найдёте тренировочные комплексы, советы по спортивному питанию и рекомендации по созданию красивого и привлекательного тела.

Источник