Работа мышц тренировки утомление

Работа мышц тренировки утомление thumbnail

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила — мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом — максимальным напряжением, которое она может развить (статическая сила).

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

Физиологический поперечник мышцы — длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой (рис. 83 ).

А Б В Г

Рис. 83. Анатомический (а-а) и физиологический (б-б) поперечники мышц с разным расположением волокон:

А — параллельноволокнистый тип; Б — одноперистый; В — двуперистый; Г — многоперистый.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

Сравнительным показателем силы разных мышц является абсолютная мышечная сила — отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

Работа мышц. При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

W= P·h Дж (кг/м, г/см)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Мощность мышцы определяется как величина работы в единицу времени. Она достигает максимума у всех типов мышц так же при средних нагрузках и при среднем ритме сокращения. Наибольшая мощность у быстрых мышц.

Утомление мышц. Утомление — временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя о истощении (частичном) энергетических ресурсов.

Читайте также:  Программа тренировок для мышц рук и плеч

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость. Высота сокращения мышцы при развитии утомления постепенно снижается. Это снижение может дойти до полного исчезновения сокращений. Понижаясь, сокращения делаются все более растянутыми, особенно за счет удлинения периода расслабления: по окончании сокращения мышца долго не возвращается к первоначальной длине, находясь в состоянии контрактуры (крайне замедленное расслабление мышцы). Скелетные мышцы утомляются раньше гладких. В скелетных мышцах сначала утомляются белые волокна, а потом красные.

Из различных представлений о механизме утомления одной из наиболее ранних теорий, объясняющих утомление, была теория истощения, предложенная К. Шиффом. Согласно этой теории причиной утомления служит исчезновение в мышце энергетических веществ, в частности гликогена. Однако, детальное изучение показало, что в утомленных до предела мышцах содержание гликогена еще значительно. В дальнейшем Е. Пфлюгером была выдвинута теория засорения органа продуктами рабочего распада (теория отравления). Согласно этой теории, утомление объясняется накоплением большого количества молочной, фосфорной кислот и недостатком кислорода, а так же других продуктов обмена, которые нарушают обмен веществ в работающем органе и его деятельность прекращается.

Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Дальнейшим изучением утомления в условиях целого организма установлено, что в утомленной мышце появляются продукты обмена веществ, уменьшается содержание гликогена, АТФ, креатинофосфата. Изменения наступают в сократительных белках мышцы. Происходит связывание или уменьшение сульфгидрильных групп актомиозина, в результате чего нарушается процесс синтеза и распада АТФ. Нарушения в химическом составе мышцы, находящейся в целостном организме, выражены в меньшей степени, чем в изолированной благодаря транспортной функции крови.

Исследованиями Н.Е. Введенского установлено, что утомление прежде всего развивается в нервно-мышечном синапсе в связи с низкой его лабильностью.

Быстрая утомляемость синапсов обусловлена несколькими факторами.

Во-первых, при длительном раздражении в нервных окончаниях уменьшается запас медиатора, а его синтез не поспевает за расходованием.

Во-вторых, накапливающиеся продукты обмена в мышце понижают чувствительность постсинаптической мембраны к ацетилхолину, в результате чего уменьшается величина постсинаптического потенциала. Когда он понижается до критического уровня, в мышечном волокне не возникает возбуждения.

И.М.Сеченов (1903)­, исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха, т.е. отдыха сопровождаемого работой левой руки. Подобного же рода влияние на работоспособность утомленной руки оказывает сочетающееся с отдыхом раздражение индукционным током чувствительных (афферентных) нервных волокон кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.

Таким образом, активный отдых, сопровождающийся умеренной работой других мышечных групп, оказывается более эффективным средством борьбы с утомлением двигательного аппарата, чем простой покой.

Причину наиболее эффективного восстановления работоспособности двигательного аппарата в условиях активного отдыха Сеченов с полным основанием связывал с действием на центральную нервную систему афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.

В организме в различных звеньях рефлекторной дуги утомление в первую очередь наступает в нервных центрах, особенно в клетках коры больших полушарий.

В настоящее время установлено, что функциональное состояние мышц находится под влиянием центральной нервной системы и прежде всего коры больших полушарий. Это влияние осуществляется через соматические нервы, вегетативную нервную систему и железы внутренней секреции.

По двигательным нервам к мышце поступают импульсы из спинного и головного мозга, вызывая ее возбуждение и сокращение, сопровождающиеся изменением физико-химических свойств и функционального состояния мышцы.

Импульсы, поступающие по симпатическим волокнам в мышцу, усиливают процессы обмена веществ, кровоснабжения и работоспособность мышцы. Такое же действие оказывают и медиаторы симпатической системы — адреналин и норадреналин.

Однако единой теории, объясняющей причины утомления, сущность утомления до настоящего времени нет, т.к. в естественных условиях утомление двигательного аппарата организма является многофакторным процессом.

Наступление утомления мышц можно задержать с помощью тренировки. Она развивает и совершенствует функциональные возможности всех систем организма: нервной, дыхательной, кровообращения, выделения и т.д.

При тренировке увеличивается объем мышц в результате роста и утолщения мышечных волокон возрастает мышечная выносливость. В мышце повышается содержание гликогена, АТФ и креатинфосфата, ускоряется течение процессов распада и восстановления веществ, участвующих в обмене. В результате тренировки коэффициент использования кислорода при работе мышц повышается, усиливаются восстановительные процессы вследствие активизации всех ферментативных систем, уменьшается расход энергии. При тренировке совершенствуется регуляторная функция центральной нервной системы, и в первую очередь, коры больших полушарий.

Читайте также:  Что кушать после тренировки для роста мышц в домашних

Источник

Лекции.Орг

Работа мышц. В основе работы мышц лежит их способность к со­кращению. Сокращаясь, мышца укорачивается, в результате чего про­исходит сближение точек начала и прикрепления мышцы. Сокращение мышц вызывает движения в суставах, изменение положения частей те­ла или, наоборот, закрепление их. Действуя с определенной силой на кости скелета, мышца изменяет по­ложение костных рычагов, совершает механическую работу, которая может быть динамической или статической.

Рис. 31. Схема действия мышц на костные рычаги:

I – рычаг равновесия, II – рычаг силы, III – рычаг скорости; А – точка опоры, 5 – точка приложения силы, В – точка сопротивления

При динамической работе костные рычаги, а вместе с ними и другие части тела перемещаются в прост­ранстве, изменяется их взаиморасположение. При статической работе тело и его части находятся в состоянии покоя. Мышцы при статической работе хотя и напряжены, но их длина не изменяется, они не укорачиваются. Такое сокращение мышц без изменения их длины называют изометрическим сокращением.

Кости скелета, соединенные суставами, при сокращении мышц действуют как рычаги. Выделяют рычаг первого рода и рычаг второго рода (рис. 31). У рычага первого рода точка приложения силы (мышечного сокращения) и точка сопротивления (тяжесть части тела, переносимый груз) находятся по разные стороны от точки опоры (оси сустава). При­мером может служить голова, кото­рая опирается на I шейный позво­нок – атлант (точка опоры). По одну сторону от атлантозатылочного сочленения действует сила тяжести лицевого черепа, по другую – сила действия затылочных мышц, при­крепляющихся к затылочной кости. Равновесие головы может быть при условии, если вращающий момент прилагаемой силы затылочных мышц (произведение силы, действующей на затылочную кость, на длину плеча, равного расстоянию от точки опоры до точки приложения силы) будет равен вращающему моменту силы тя­жести передней части головы (про­изведение силы тяжести на длину плеча, равного расстоянию от точки опоры до точки приложения силы тяжести).

Рычаг второго рода, у которого и точка приложения мышечной силы, и точка силы тяжести расположены по одну сторону от точки опоры, бывает двух видов. У первого вида рычага второго рода плечо прило­жения мышечной силы (место при­крепления ахиллова сухожилия к пяточной кости) длиннее плеча при­ложения (действия) силы тяжести (голеностопный сустав). У второго вида рычага второго рода плечо приложения мышечной силы (место прикрепления двуглавой мышцы пле­ча к лучевой кости) короче пле­ча действия силы тяжести (кисти). Для преодоления силы тяжести необходимо приложить значитель­ную мышечную работу. В то же время имеется выигрыш в размахе движения и скорости перемещения предплечья и кисти.

Силу мышц определяют по вели­чине того груза, который мышца при своем максимальном сокращении может поднять на определенную вы­соту. Такую силу принято называть подъемной силой мышцы. Сила раз­ных мышц неодинакова. Она зави­сит от числа мышечных волокон от площади поперечного сечения этих волокон. Сравнивая равновеликие веретенообразную мышцу с продоль­ным направлением длинных мышеч­ных волокон и перистую мышцу с косым направлением большего числа коротких мышечных волокон, мы установим, что перистая мышца сильнее. Показателем силы мышцы служит ее физиологический поперечник – площадь поперечного сечет всех ее мышечных волокон (рис. 32). Величину (размеры) мышцы характеризует ее анатомический поперечник, – поперечное сечение мышцы наиболее широкой ее части.

Вращающая сила мышцы зависит не только от ее физиологического поперечника и подъемной силы, но и от угла прикрепления мышцы к костям. Чем больше угол,покоторым мышца прикрепляется к кости, тем большее действие она может оказать на эту кость. Для увеличения угла прикрепления мышц к костям служат блоки.

Рис. 32. Схема анатомическо­го и физиологического попе­речников мышц различной формы: 1 – лентовидная мышца, 2 – веретенообразная мышца, 3 – одноперистая мышца (сплошной линией обозначен анатомический поперечник мышц, прерывистой – фи­зиологический поперечник)

Читайте также:  Программа тренировок дома грудные мышцы

Мышечный тонус. В покое каждая мышца человека находится в состоя­нии постоянного непроизвольного сокращения – тонуса, который под­держивается рефлекторно за счет по­ступающих в мышцу нервных им­пульсов. Это небольшое напряжение мышц тела необходимо для поддер­жания их стартового состояния, со­противления растяжению, готовности

к действию. Длительное, судорожное сокращение мышцы, продолжающееся, несмотря на прекращение раздра­жения, называют контрактурой.

Управление движением. Способ­ность животных, в том числе и че­ловека, передвигаться и выполнять различные действия под контролем нервной системы – одна из важнейших особенностей, отличающих жи­вотных от растений. Сокращение мышечных волокон происходит под влиянием импульсов, приходящих из головного и спинного мозга по нерв­ным волокнам (отросткам двигательных нейронов). Сокращаясь, мышцы обеспечивают движение. При этом они никогда не работают изолиро­ванно, в одиночку. Выполнение лю­бого движения достигается согласо­ванным действием групп мышц, как сгибателей, так и разгибателей. На­пример, вертикальное положение те­ла человека обеспечивают до 150 мышц.

В зависимости от направления усилий, развиваемых мышцами, их принято делить на синергисты и анта­гонисты. Мышцы, которые действуют на сустав в одном направлении (на­пример, сгибают кисть), получили название мышц-синергистов, мышцы противоположного действия явля­ются мышцами-антагонистами. При каждом движении сокращаются не только мышцы, совершающие его, но и их антагонисты, противодейст­вующие тяге и тем самым при­дающие движению точность и плав­ность. В каждой группе мышц мож­но выделить главные мышцы, вы­полняющие это движение, и вспо­могательные, которые уточняют, «мо­делируют» это движение, придают ему индивидуальные особенности.

Скелетные мышцы человека спо­собны сокращаться, подчиняясь его воле. Такие движения называют произвольными. Движения этого типа отличаются от рефлекторных (не­произвольных движений), которые выполняются помимо воли человека, например, если человек, неосторож­но коснувшись раскаленной плиты, отдергивает руку, еще не успев осо­знанно почувствовать боль. При про­извольных движениях нервные им­пульсы к скелетным мышцам посту­пают из двигательных центров коры большого мозга. Непроизвольные движения управляются из соответ­ствующих центров ствола головного и спинного мозга.

Мышечные волокна сокращаются только по приказу двигательных ней­ронов. Двигательный нейрон и его длинный отросток – аксон вместе с мышечными волокнами, которые он контролирует, называют двигатель­ной единицей.

Двигательные нейроны ствола го­ловного мозга и передних рогов спин­ного мозга контролируются нейрона­ми двигательной зоны коры полу­шарий большого мозга.

Источником активации нейронов двигательной зоны коры полушарий большого мозга является зрительная, слуховая, кожная, мышечная инфор­мация, поступающая в кору от ор­ганов чувств. На основе ее двига­тельная зона коры формирует осоз­нанный двигательный акт.

Утомлением называют временное понижение работоспособности клет­ки, органа или организма в целом, наступающее в результате работы и исчезающее после отдыха. Разви­тие утомления в двигательном аппа­рате при длительной или напря­женной работе зависит от несколь­ких факторов. Прежде всего, утом­ление связано с процессами, разви­вающимися в нервной системе, в нервных центрах, участвующих в уп­равлении двигательной деятель­ностью.

Ряд причин развития утомления связан с процессами, происходящи­ми в самой мышце. Это накопление в ней продуктов обмена (молочной кислоты и др.), оказывающих угне­тающее действие на работоспособ­ность мышечных волокон, и умень­шение в них энергетических запасов (гликогена).

Скорость развития утомления при мышечной работе зависит от двух показателей – от физической на­грузки и от ритма работы, т. е. от частоты мышечных сокращений. При увеличении нагрузки или при уча­щении ритма мышечных сокращений утомление наступает быстрее. Мы­шечная работа достигает максималь­ного уровня при средних нагрузках и средних скоростях сокращения мышц.

Физическое утомление – нор­мальное физиологическое явление. После отдыха работоспособность не только восстанавливается, но и часто превышает исходный уровень. Ра­ботоспособность быстрее восста­навливается при активном отдыхе. чем при полном покое. Впервые оте­чественный ученый-физиолог И. М. Се­ченов в 1903 г. показал, что вос­становление работоспособности утом­ленной мышцы правой руки проис­ходит быстрее, если в период отдыха производить работу левой рукой. В отличие от простого покоя такой от­дых был назван И. М. Сеченовы» активным. Им были заложены ос­новы гигиены труда, имеющие зна­чение для рациональной организа­ции трудовых процессов.

1. Какую работу называют динамической, какую – статической. Приведите примеры.

Дата добавления: 2015-10-01; просмотров: 4400 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник